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1 INTRODUCTION  

Streets and roads are part of a community, and a safe and healthy community must value 

maintaining a safe roads/street for all people of the community and not just those driving 

vehicles [1]. This includes providing safe road for mixed form of transportation such as 

micromobility. The Federal Highway Administration broadly defines micromobility as any 

small, low-speed, human- or electric-powered transportation device, including bicycles, scooters, 

electric-assist bicycles, electric scooters (e-scooters), and other small, lightweight, wheeled 

conveyances. The importance of micromobility use is becoming more widely recognized in 

urban transportation, especially in terms of its ability to decrease emissions, congestion, and 

noise pollution, as well as its convenience. Moreover, micromobility can save energy and space 

[2].  

E-scooters are becoming an increasingly popular mode of transportation in major cities around 

the world. E-scooters offer a convenient and environmentally friendly alternative to vehicles for 

short trips. In fact, it has become the most popular form of shared micromobility in many cities 

[3]. E-scooters have become popular in large cities around the world, leading to increased 

sharing of urban space with bicycles, which raises important questions about the safety and about 

conflict between both modes of transportation. Moreover, with increasing private e-scooter 

ownership and shared e-scooter programs in major urban centers, legislation has been pushing e-

scooters to bike lane or road lane [3]. Understanding the differences and similarities between the 

crashes, the factors influencing the crashes and the severity of injury to the user can help 

designers and policy makers make better decisions about how to use urban space in a way that is 

safe and efficient for all road users.  
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There are only handful of studies looking into the similarities and differences between e-scooter 

and bicycle in terms of safety. One such study, by Namiri, et.al. (2021), found that e-scooter and 

bicycle riders are both prone to serious injuries if intoxicated. The study analyzed the National 

Electronic Injury Surveillance System (NEISS) data concerning bicycle and e-scooter related 

emergency cases. It also showed that a higher proportion of e-scooter users are intoxicated, as 

compared to cyclist, calling for more awareness programs and training [4]. Another study, by 

Meyer, et.al., (2022), compared injuries and contributing factors for e-scooter and bicycle riders 

in Germany. The researchers utilized level 1 trauma center data to analyze the injuries and found 

that the injury severity was higher in e-scooter users than in bicycle users. They also found that 

helmet use was less common among e-scooter users compared to bicycle users [5].Survey 

conducted by Useche, et.al, (2022) study found e-scooter users in Spain had a higher rate of 

perceived risky behaviors compared to bicycle users [6].  

A fairly new form of micromobility, the e-scooter’s characteristics and interaction with the 

environment are not well established. Although traditional crash reports are limited in terms of e-

scooter data, many studies have utilized alternative sources of data, such as National Electronic 

Surveillance System (NESS) data, Hospital emergency data, emergency medical service 

telephone records, patient interview surveys [7]. Most descriptive studies on e-scooter usage and 

safety using NESS data showed that younger populations were more involved in crashes, and a 

positive relation between e-scooter crashes and intoxication. These studies also found that about 

10-20% of e-scooter crashes involved motor vehicles and most motor vehicle involved crashes 

causes more severe injuries [4] [8] [9].  

In a recent study done on e-scooters in Austin, Texas, English, et.al. (2020), found that about 

10% of the e-scooter related crashes involved a moving vehicle, and the majority involved a 
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white male in his 30s falling off the e-scooter in an intoxicated state [10]. A 2022 study in Austin 

also found that males younger than 34 years were more prone to crashes [11]. Studies in 

Washington, DC using hospital e-scooter related crash data and patient interviews showed that 

around 10-15% of e-scooter crashes involved moving vehicle. The characteristics and behaviors 

of e-scooter riders in Washington, DC, do not follow the characteristics and behaviors from other 

larger cities [12] [13]. Similarly, in Copenhagen the demographic of e-scooter user is mostly 

teenagers [14]. This study focuses on understanding the factors affecting safety of e-scooters and 

bicycle users in just one city. 

To the author’s knowledge, there is a lack of e-scooter injury severity studies in present 

literature. It is because of this reason; this study has evaluated bicycle related safety studies and 

its methodologies. Many studies have used traditional statistical methods such as logistic 

regression, proportional odds models, partial odds models and other models in micro mobility 

safety analysis [15], [16], [17] , whereas others have also made use of machine learning models 

such as Random Forest (RF), XGboost, Support Vector Machine (SVM), etc., [18], [19], [20] in 

micro mobility analysis. Although these studies demonstrate the supremacy of machine learning 

models in classification accuracy, some literature still found that traditional models like logistic 

regression perform better than machine learning models [21].  

As severely injured or fatally injured cases are comparatively rare, the crash severity data suffers 

from class imbalance. The problem with class imbalance data is that standard classification 

algorithms tend to be biased towards the majority classes [22]. Recent studies have identified 

different techniques to treat imbalanced crash severity data, including over-sampling, under-

sampling, and hybrid methods [23] [24] [25]. This research also aims to provide insight in terms 

of using different sampling methodology to overcome the problem of data imbalance as well as 
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compare traditional statistical model and tree-based machine learning models for modeling e-

scooter and bicycle injury severity in addition to comparing e-scooter and bicycle injury severity 

contributing factors. 
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2 LITERATURE REVIEW 

This literature review section is divided into three parts, the first part investigates the studies 

looking into the similarities and differences between e-scooters and bicycle. The second section 

reviews papers using machine learning in injury severity analysis in different mode of 

transportation specially bicycle. Finally, the third part deals with use of topic modeling and 

natural language processing in transportation related research. 

2.1 E-scooter and bicycle 

Several studies have been conducted to examine various aspects of e-scooters and bicycles. This 

section will discuss some of the studies that have investigated the similarities and differences 

between the two modes of transportation. One of these studies took a sample of 2000 e-scooters 

in the campus of Virginia Tech and collected trajectory data via GPS devices. The researchers 

implemented recursive logit route choice model to identify travel characteristics of e-scooter 

users. They found e-scooter users travel on bikeways (59%), multi-use paths (29%), tertiary 

roads (15%) and the travel distance does not affect the travel. Moreover, slope is also not a 

determinant for e-scooter route choice [26]. In addition to e-scooters competing for urban space 

with bicycle, e-scooters are also replacing some types of bicycles like e-bike. Researchers 

studied the impact of e-scooter sharing on bike sharing in Chicago using publicly available e-

scooter data from 2019 and bike sharing data from Divvy bikes. The study uses difference-in-

difference (DID) method to analyze before and after effect of introduction of e-scooter sharing 

program to bicycle sharing program. They found that bike sharing decreased after the 

introduction of e-scooters but was not affected during the peak hours [27].  

The purpose of use of e-scooter and bicycle is not the same according to some studies. Bielinski, 

et. al. in their 2020 study compared the users of e-scooter sharing user and e-bike sharing users. 
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The study was based on survey done in Tricity metropolitan area in northern Poland. They found 

that e-scooters are mostly used for leisure purposes whereas people use e-bikes for mostly first 

and last mile transport and getting to point of interest [28]. Similar research also found the same 

finding. The researchers in the study conducted a survey to understand the differences and 

similarities between e-scooter sharing and bike sharing users in the city of Trinity in northern 

Poland. The main finding of the study was that e-bikes are usually used as a first and last mile 

transport and to commute directly to various places of interest, whereas e-scooters are more often 

used for leisure rides [29]. 

Similarly, Stray, A, et. al., in their study characteristics of electric scooter and bicycle injuries 

after introduction of electric scooter rentals in Oslo, Norway compared e-scooters and bicycles. 

The study used 3191 patient records (850 e-scooter riders’ and 2341 bicyclists) and observed the 

riders characteristics such as age distribution, helmet use, day of week and time are different 

from that of bicyclists [30]. Likewise, a study used emergency department data for e-scooter and 

bicycle related accident patient from the Oslo University Hospital between January 1, 2019, and 

March 31, 2020. The research compared the characteristics to both the mode of transportations 

and found that e-scooter injuries were associated with younger age and a higher rate of 

intoxication compared to bicycle injuries. E-scooter injuries were more likely to occur on 

weekends and during evening or nighttime hours, while bicycle injuries were more likely to 

occur during weekdays and daytime. Annual incidents of injury were higher for bicycle users, 

but e-scooter riders were less likely to use a helmet [31].  

Study done in Spain used road user’s risk perception in the form of rating for e-scooter and 

bicycle users. The data was collected for 950 non-cyclist and non-e-scooter users in Spain. In the 

survey e-scooter users were found to have more dangerous and risky behavior on the road 
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compared to cyclist [32]. Additionally, many studies suggest e-scooter have a risky behavior 

such as no helmet use and intoxicated riding. A study in Finland compared facial injuries in e-

scooter or bicycle related accidents between January 2019 and October 2020. Higher proportion 

of e-scooter users had a facial injury compared to proportion of bicycle users with facial injury. 

Alcohol involvement was significantly higher in e-scooter patients (88.9%) than in bicycle 

patients (31.5%) with a p<0.001. The researchers also conducted a multivariate analysis and 

concluded that e-scooter incidents were 18times more likely to occur under the influence of 

alcohol [33]. Similar study in Germany also concluded that e-scooter riders have an increased 

risk of facial injury compared to cyclists [34]. The study used e-scooter and bicycle patient data 

from the Department of Oral and Maxillofacial Surgery and Department of Trauma Surgery of 

the Technical University of Munich, Germany. The data showed that no e-scooter patient was 

wearing a helmet and the number of riders under influence was also higher in e-scooter 

compared to cyclists.  

Another study investigating the risky behavior of e-scooters, bicycle and e-bike found e-scooter 

users to be more likely involved in a secondary task like using headphones while riding [35]. The 

observational study was performed in Germany where researchers collected direct data from the 

streets of Braunschweig. They also found that e-scooter users were slightly more likely to violate 

one or more traffic rules compared to e-bike or bicycle riders.   

Although early research has found that e-scooter users show a risky behavior while driving [11], 

[12], [13], [29], some studies are investigating this issue more closely. In such study’s recent 

finding suggest that e-scooter maneuvering is safer than bicyclist in lower speeds [36]. This 

study used field collected data from bicycle and e-scooters in Sweden to compare the two modes 

of transportation with respect to safety. The researchers developed a framework to analyze the 
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data from the different sensors and developed a model to generalize the results. The findings 

from the analysis showed that e-scooters might be more easily maneuverable and comfortable 

than bicycle. The sensors were used to collect data on braking, steering, speed as performance 

indicators. A survey was also conducted comparing e-scooter and bicycle use. It found that users 

found it less comfortable to brake on the e-scooters than bicycle, while they felt more 

comfortable for the steering. At higher speed bicycle was easier to maneuver but at lower speed 

of 10kmph user felt e-scooter to be easier.  

Another study found that e-scooter related facial injury is not more than bicyclist but comparable 

to bicyclist related facial injury [37]. The study used emergency department’ patients record data 

from Liverpool for 2020 and 2021 and analyzed the injury sustained by e-scooter users. The 

study was designed to study the effects of legislative change in e-scooter related policy in 2020 

affecting e-scooter ridership. It found that the increase in e-scooter usage also increase in e-

scooter related musculoskeletal injuries, but the rate was comparable to bicyclist. Similarly, A 

comparative study [38] was conducted in Washington, DC between e-scooter and bicycle using 

emergency department data. The data related to e-scooter injury was from 2019 and that of 

bicycle user was from 2015-2017. It was observed that e-scooter crash less frequently involved 

moving vehicles (13.1% vs 37.7%) or occur on roads (24.5% vs 50.7%). Head injury rates were 

similar but e-scooter riders more often experienced concussion with loss of consciousness (4% 

vs 6%) and are far less likely to were helmets (2% vs 66%). The researchers conclude that the 

type of injury sustained by the two modes of transportation are different and the frequency is 

greater for e-scooters but the rate may decrease as people gain experience using the new mode of 

transportation. 
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A recent study conducted in the city of Brisbane, Australia, where e-scooters are only permitted 

on footpaths alongside pedestrians, delved deeper into this issue by comparing the helmet usage 

of both shared and private e-scooters and bicycles. The study collected data directly on-site and 

the findings reveal that, regardless of whether they are riding e-scooters or bicycles, individuals 

are less likely to use helmets when utilizing shared vehicles as opposed to privately-owned ones 

[39].  

In conclusion, this section of the literature review has investigated studies that have compared e-

scooters and bicycles. Studies have found that e-scooters and bicycles have different 

characteristics such as age distribution, helmet use, and time of use. E-scooters were found to be 

associated with younger age and higher rate of intoxication compared to bicycle injuries, and e-

scooters injuries were more likely to occur on weekends and during evening or nighttime hours. 

Additionally, research showed that e-scooters are mostly used for leisure purposes whereas e-

bikes are mostly used for first and last mile transport and getting to point of interest. The 

research also showed that E-scooter riders were less likely to use a helmet. Overall, this literature 

review provides insight into the characteristics and usage patterns of e-scooters and bicycles and 

the comparison between them. Much research shows that e-scooters can be a convenient and safe 

mode of transportation with responsible user especially private e-scooter users. One research 

even pointed e-scooter to be easier to maneuver in lower speeds. Since the findings are not 

definitive and clear there is a need for further research to help policy makers make informed 

decisions on e-scooters and bicycles.  

2.2 Machine learning in injury severity analysis 

Many transportation safety researchers are highly interested in modeling the severity of injuries 

that occur in crashes. By predicting the expected severity of a crash, it can help identify the 
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factors that contribute to injury severity, which can help to reduce the severity of crashes and 

improve road safety. Contributing factor analysis can also help identify infrastructure related 

characteristics between different mode of transportation. Additionally, such prediction can also 

aid hospitals in providing appropriate medical care quickly. This section of the literature review 

investigates the use of different statistical methods and machine learning models in injury 

severity analysis. 

In a comprehensive literature review of studies dealing with crash injury severity Savolainen et 

al. presented different statistical methodology used in injury severity as well as the nature of 

injury severity data [41]. According to the review injury severity data consists of many 

characteristics such as multicollinearity, within crash correlation and unobserved heterogeneity. 

These issues in the injury severity data can affect in model prediction and sometimes contradicts 

statistical models assumptions [42].  Similarly, Santos et al. in their review of machine learning 

algorithms for crash injury severity prediction reviewed 56 studies and concluded that random 

forest, support vector machine and decision tree performed the best in most pf the studies 

reviewed. More specifically, random forest preformed best in 70% of the studies when it was 

applied [43].   

Another recent paper compared different machine learning and traditional statistical models in 

injury severity of motor vehicle crashes in rural highway. The study used XGBoost, logistic 

regression, random forest and decision tree to model the data and found XGBoost to outperform 

all other models [44].  

[40] A study from Sweden, the researchers present a review of current literature and proposes a 

preliminary framework for developing a Level of Service (LOS) for e-scooters. The study 

highlights that need for more studies related to infrastructure and e-scooters as e-scooter are 
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becoming more and more popular. The researchers also suggest more comparative studies 

between different modes of transportation and e-scooter for better understanding of e-scooters 

impact. Considering all these research’s findings and recommendation this thesis will try to 

understand the differences and similarities of e-scooter crashes and bicycle crashes using 

different techniques.  This thesis intends to provide additional information regarding e-scooter 

and bicycle to policy makers and planners for more informed decision making and design. 

2.3 Topic modeling and natural language processing 

Few research has made use of natural language processing and topic modeling in analyzing 

crashes in transportation research. Most studies that have done it use it in analyzing the 

description of the crash scene and extract more information and unobserved trends.  

Das, et. al. in their 2021 study explores the use of text mining and topic modeling to understand 

and extract insights from detailed crash narratives available in the Motorcycle Crash Causation 

Study (MCCS) sponsored by NHTSA. The dataset contained 351 injury crashes. The study used 

Latent Dirichlet allocation (LDA) method for topic modeling of the crash narrative. The 

language analysis was done on two separate clusters of data, namely fatality related dataset and 

non-fatality related dataset. Different topic clusters were identified with these datasets whose 

composition was studied and compared. Highly representative keywords or risk factors in fatal 

crash reports were compared for both the clusters (fatality related and non-fatality related) (Das, 

Dutta, & Tsapakis, 2021). 

Another study which used LDA in transportation related, more specifically e-scooter related 

study is Aman, et. al., 2021. The study utilized LDA model to analyze over 12,000 rider0- 

generated reviews to understand the satisfaction factor and concerns of users [46]. Similarly, 

Kwayu, 2020, analyzed crash reports which had 'failed to yield' or 'disregarded traffic control' in 
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hazardous action in signal-controlled intersection. The purpose of the research was to discern and 

difference between these two types of hazardous action as it is sometimes used interchangeably 

and can be confusing. They successfully inferred in what cases police reported a 'disregarded 

traffic control' or 'fail to yield' [47]. Likewise, Zhang et. al., 2016, claims that the information on 

hazardous actions in a crash report is not always accurate and the use of the descriptive narrative 

to identify hazardous actions is warranted. The experiment focused discerning if hazardous 

actions was 'none' or 'hazardous' using NLP and ML [48] . 
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3 DATA 

3.1 CRIS  

The data for the study is collected from Texas Department of Transportation (TxDOT) Crash 

Record Information System (CRIS) database. The database contains information collected by 

Texas police officers throughout the state and is maintained by TxDOT. The study also had 

access to police reports which was used for text mining to extract e-scooter relate data. 2195 

crash data from 2018 to 2021 was available for analysis, of which 153 data points were identified 

to be involving e-scooter crashes. 819 bicycle related crash data points were filtered from the 

dataset. A distribution of variables selected by PhiK and domain knowledge is tabulated below. 

Table 1 CRIS variable summary 

SN Name Column name Definition/Detail Frequency 

    E-

scooter 

Bicycle Combined 

1 Alcohol Prsn_Alc_Rslt_ID Alcohol content in e-

scooter/bicycle user  

   

1=alcohol 2 0 2 

0=no-alcohol 151 819 970 

2 Roadway system Rpt_Rdwy_Sys_ID Road system on which 

crash occurred 

   

1=Interstate 10 25 35 

2=US Highway 1 19 20 

3=State Highway 1 22 23 

4=Farm to Market 0 3 3 

5=Local Road/street 141 771 912 

3 Roadway Road_Algn_ID 1= straight, level 150 694 844 
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alignment 2= straight, grade 5 136 141 

3 = straight, hillcrest 4 43 47 

4 = curve, level 5 21 26 

5 = curve, grade 0 21 21 

6 = curve, hillcrest 1 5 6 

3  (Manner of 

collision) 

FHE_Collsn_ID 1=one motor vehicle – 

going straight 

61 446 507 

2= one motor vehicle – 

turning right 

30 177 207 

3= one motor vehicle – 

turning left 

15 204 219 

4= on motor vehicle - 

backing 

0 4 4 

5=one motor vehicle - other 0 6 6 

10=Both Angle 26 3 29 

20=Both Same direction 8 0 8 

30=Both Opposite direction 13 0 13 

4 Traffic Control 

Device 

Traffic_Cntl_ID 1=None 24 146 170 

5=Signal light 39 177 216 

20=Marked line 34 211 245 

8=stop sign 16 103 119 

15=crosswalk 15 45 60 

21=signal light with red 

light running camera 

8 14 22 

11=center divider 8 51 59 

16=bike lane 6 54 60 

17=other 2 20 22 

9=yield sign 1 9 10 
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10=warning sign 0 6 6 

5 Roadway Type Road_Type_ID 0=other type 0 2 2 

1=2lane,2way 0 3 3 

2=4 or more lane, divided 20 102 122 

3=4 or more lane, 

undivided 

133 712 845 

6 Ethnicity Prsn_Ethnicity_ID 0=Unknown 5 17 22 

1=White 88 553 641 

2=Hispanic 25 141 166 

3=Black 22 58 80 

4=Asian 6 29 35 

5=Others 3 7 10 

7 Light Condition Light_Cond_ID 0=Unknown 1 6 7 

1=Daylight 89 616 705 

2=Dawn 0 5 5 

3=Dark, not lighted 8 45 53 

4=Dark, lighted 54 152 206 

5=Dusk 1 14 15 

6=Dark, unknown lighting 0 2 2 

8 Weather 

Condition 

Wthr_Cond_ID 0=Unknown 2 6 8 

2=Rain 8 24 32 

5=Fog 0 1 1 

8=Other 0 1 1 

11=Clear 126 667 793 

12=Cloudy 17 141 158 

4=Winter 0   

9 Weekend binary weekend_binary 0=weekday 72 522 594 

1=weekend 81 318 399 
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10 Helmet use Prsn_Helmet_ID 0=unknown 5 102 107 

1=worn 3 289 292 

2=not worn 144 438 582 

11 Intersection Intrsct_Relat_ID 0=No 49 324 373 

1=Yes 104 516 620 

12 Vehicle Body 

Style 

Veh_Body_Styl_ID_1 0=Unknown 6 50 56 

1=Passenger car 95 472 567 

2=SUV 27 157 184 

3=Pickup 18 106 124 

4=Van 3 25 28 

5=Heavy vehicle (truck, 

bus) 

4 30 34 

13 Age of rider Prsn_Age Age of micromobility / 

bicycle rider 

   

14 Age of driver Prsn_Age_unit1 Age of motor vehicle driver    

The injury severity data available in the CRIS database is of ordinal nature. The Injury classes 

are more severe as the level increases. Usually around 2-3% fatal injuries are observed related to 

e-scooter and bicycle involving crashes. The CRIS data has five level of injury severity which is 

aggregated into severe and non-serious injuries. There are 21 severe and 132 non-severe e-

scooter related injury severity data points and 103 severe injury cases and 737 non-severe cases 

in case of bicycle crashes. 

3.2 Demographic and Socioeconomic data 

The American Community Survey’s five-year average demographic and Socioeconomic data is 

used in this study. The American Community Survey is a demographics survey program 

conducted by the U.S. Census Bureau. The data is downloaded from social explorer [45]  as it 
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provides a cleaner format of the dataset. The different demographic and socioeconomic variables 

used in the study is mentioned in Table 2. 

3.3 Built Environment data 

3.3.1 City of Austin 

City of Austin’s open data portal provides access to several built environment datasets. This 

study has utilized the dataset available in the open data portal for analysis.  Among other 

datasets, the study makes use of the Land Use dataset. The Land Use dataset is maintained by the 

Housing and Planning Department of City of Austin.  

The land inventory is based on several sources. The polygon geography is taken from appraisal 

district parcel layers merged and the land use is calculated by classifying land according to a 

coding system that reflects the primary improvements (building and structure) on each parcel 

[46]. 

The Land Use data is used to calculate the Land Use Mix Index or land use entropy for each 

count point within 1 mile around the point or location. The idea behind mixing urban land uses is 

that a variety of applications or activities that are near together may serve complementary 

purposes, each of which increases the usefulness of its neighbors [47]. To measure the land use 

mix, Entropy Index is used in this study. The Entropy Index is an adaptation of Shanon’s 

Entropy. The equation of land use mix index (ENT) is shown as follows.  

𝐸𝑁𝑇 = −
[ ∑ 𝑃𝑖 ln(Pi)]

ln(k)
 

Where Pi is the percentage of each type of land use within the buffered area around the count 

point i; k is the number of land-use types within the buffer zone i, and k ≥ 2.   
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The bike facility dataset made available in the City of Austin’s open data portal by The Austin 

Transportation Department. The dataset has rich information regarding the presence of bike lane 

and the type of bike lane such as buffered bike lane, protected bike lane, trail lane, or no bike 

lane. Similarly, Urban trail dataset prepared by Urban Trails Program, Department 

Neighborhood Connectivity Division, City of Austin Public Works is also utilized in the study. 

The dataset describes a specific type of urban infrastructure for bicycle and pedestrians mostly 

used for recreational purposes mostly within park or similar area. 

3.3.2 Smart Location data 

The U.S. General Services Administration (GSA) and U.S. Environmental Protection Agency 

(EPA) Smart Location Database (SLD) satisfies the rising demand for data products and 

technologies that systematically assess the location efficiency of distinct locations. For each 

Census block group (CBG) in the US, the SLD provides a summary of a number of 

demographics, employment, and built environment factors [48]. The smart location database’s 

variables are highly correlated with each other as seen in Figure 1. Since network related 

variables are calculated using roadway network related dataset from TxDOT, only transit related 

(D4A) and walkability features are used in model training. 
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Figure 1 Pearson correlation coefficient more than |0.5| between smart location variables 

3.3.3 Roadway inventory 

The roadway related data is collected from TxDoT’s roadway inventory datasets. TxDoT 

annually publishes the dataset which contains GIS line work, and all roadway inventory 

attributes [3]. The variables available and used for the study from this dataset is mentioned in the 

variable table below from SN 22 to SN 30. The variables in Table 2 is calculated using the data 

available in the roadway inventory dataset with respect to 1 mile radius around count station 

location. Density of roadway network within 1 mile of buffer around a location is calculated by 

dividing total length of network (ft.) by the area of buffer (sq.ft.). 

Different variables from the different data sources used in the study and mentioned above are 

mentioned in Table 2. 
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Table 2 Description of variables from different data sources 

 Name Column name Description 

Demographic 

1 Total Population TotPop The attribute indicates the total population 

within 1 mile radius of the station 

2 Total Male Population TotPopMale The attribute indicates the total male 

population within 1 mile radius of the 

station 

3 Total Female Polulation TotPopFemale The attribute indicates the total female 

population within 1 mile radius of the 

station 

4 Male population 5 to 14 

years of age 

Male_5_14 The attribute indicates the total male 

population between the age 5 and 14 

within 1 mile radius of the station 

5 Male population 15 to 

24 years of age 

Male_15_24 The attribute indicates the total male 

population between the age 15 and 24 

within 1 mile radius of the station 

6 Male population 25 to 

34 years of age 

Male_25_34 The attribute indicates the total male 

population between the age 25 and 34 

within 1 mile radius of the station 

7 Male population 35 to 

54 years of age 

Male_35_54 The attribute indicates the total male 

population between the age 35 and 54 

within 1 mile radius of the station 

8 Male population 55 to Male_55_64 The attribute indicates the total male 
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64 years of age population between the age 55 and 64 

within 1 mile radius of the station 

9 Male population 65 and 

over 

Male_65_over The attribute indicates the total male 

population between the age 65 and more 

within 1 mile radius of the station 

10 Total White population Pop_Race_White The attribute indicates the total population 

identifying as White race within 1 mile 

radius of the station 

11 Total Black population Pop_Race_Black The attribute indicates the total population 

identifying as Black race within 1 mile 

radius of the station 

12 Total Asian population Pop_Race_Asian The attribute indicates the total population 

identifying as Asian race within 1 mile 

radius of the station 

13 Total native American 

population 

Pop_Race_Native The attribute indicates the total population 

identifying as Native American race within 1 

mile radius of the station 

14 Total population – two 

or more race 

Pop_Race_Two The attribute indicates the total population 

identifying as two or more race within 1 

mile radius of the station 

15 Number of Household House Number of households occupied by owners 

16 Bachelors or higher 

education 

Edu_Bachelor_ more The attribute indicates the population 25 

year and over with a bachelor’s degree or 

higher degree 
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17 Households with less 

than $60k  

HHI_less_60 The attribute indicates the number of 

households with household income less 

than $60k within 1 mile of the station 

18 Households with 

income between $60k - 

$100k 

HHI_60_100 The attribute indicates the number of 

households with household income 

between $60k and $100k within 1 mile of 

the station 

19 Households with 

income between $100k 

- $150k 

HHI_100_150 The attribute indicates the number of 

households with household income 

between $100k and $150k within 1 mile of 

the station 

20 Households with 

income more than 

$150k 

HHI_150_more The attribute indicates the number of 

households with household income more 

than $150k within 1 mile of the station 

21 Per capita income Income The attribute indicates per capita income 

(adjusted for the year mentioned in the 

year column) 

Built Environment 

22 Urban 

Interstate/Freeway 

density within 1 mile 

radius 

UI_1mile The attribute indicates urban 

Interstate/Freeway highway density 

(length/area) within 1 mile radius 

23 Urban arterial road 

density  

UA_1mile The attribute indicates Urban Arterial 

highway density (length/area) within 1 mile 
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radius 

24 Urban connector road 

density  

UC_1mile The attribute indicates Urban Collector 

highway density (length/area) within 1 mile 

radius 

25 Urban local road 

density  

UL_1mile The attribute indicates Urban Local highway 

density (length/area) within 1 mile radius 

26 Rural 

Interstate/Freeway 

density within 1 mile 

radius 

RI_1mile The attribute indicates Rural 

Interstate/Freeway highway density 

(length/area) within 1 mile radius 

27 Rural arterial road 

density  

RA_1mile The attribute indicates Rural Arterial 

highway density (length/area) within 1 mile 

radius 

28 Rural connector road 

density  

RC_1mile The attribute indicates Rural Collector 

highway density (length/area) within 1 mile 

radius 

29 Rural local road density  RL_1mile The attribute indicates Rural Local highway 

density (length/area) within 1 mile radius 

30 Maximum speed within 

1 mile radius 

MaxSpd_1mile The attribute indicates the maximum speed 

in any roadway within 1 mile radius buffer 

of the location 

31 Most common land use 

type 

Land_use The most common land use type within 1 

mile of the crash location 

32 Land use entropy Lu_entropy Land use entropy within 1 mile of the crash 
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Bicycle facility type Bike_fac12 Presence of Bicycle facility and its type 

0 = no bike lane 

1 = bike lane 

2 = buffered bike lane 

3 = protected bike lane 

4 = trail lane 

34 Unprotected land Ac_Unpr Total unprotected land (i.e., not park, not 

national park, etc.) 

35 Total road network D3A Total road network density 

36 Multimodal link 

network density  

D3AMM Network density in terms of facility miles of 

multi-modal links per square mile 

37 Pedestrian oriented link 

network density 

D3APO Network density in terms of facility miles of 

pedestrian oriented links per square mile 

38 Street intersection 

density 

D3B Street intersection density (weighted, auto-

oriented intersections eliminated) 

39 Walkability index NatWalkInd Walkability index comprised of weighted 

sum of the ranked values of other smart 

location variables such as D2A.  

40 Distance to transit stop D4A Distance from the population-weighted 

centroid to nearest transit stop (meters) 

41 Transit frequency per 

0.25 miles 

D4C Aggregate frequency of transit service 

within 0.25 miles of CBG boundary per 

hour during evening peak period, 2020 

GTFS 
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42 Transit frequency per 

mile 

D4D Aggregate frequency of transit service 

[D4C] per square mile 
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4 METHOD 

The bicycle and e-scooter data used in this study are preprocessed in Jupyter Notebook using 

python programming language. In addition, it is also used for model building as well as handling 

spatial data. PhiK correlation coefficient is used as variable selection method to select important 

variables for model training. The cleaned datasets are resampled using different techniques as 

further discussed in the paper. The resampled data are then evaluated based on an RF model 

using repeated stratified K-fold cross-validation technique. The best-performing sample is then 

split into train data and validation data before training the models for classification. The 

methodology steps implemented in this study are shown in Figure 1. The individual steps of the 

study are discussed in detail after the figure. 
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Figure 2 Flow chart of study method for identifying contributing factors. 

4.1 Text Mining 

There have been many advances in text mining and text source interpretation in transportation 

safety analyses. Traditionally, crash reports contain highly detailed information including 

linguistic narratives with details about crash events and contexts. Many studies have compared 

different methods of text mining in transportation context [49]. There is no specific code for e-
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scooter in the crash dataset, so text mining is recognized as a suitable tool for identifying e-

scooter involved crashes in police reports. This study utilizes an optical character recognition 

(OCR) tool, Tesseract OCR Engine, for reading the descriptive section of police reports. All the 

recognized words are then separated and checked for predetermined keywords related to e-

scooters. The keywords are determined using manual analysis of a fraction of crash reports 

involving e-scooters.  

4.2 Topic modeling 

Natural language processing technique is used to generate new features and understand the 

descriptive section of the police reports. As the police report’s description section is digitized for 

identifying e-scooter related cases, the digitized descriptive section is used to cluster the incident 

cases based on the use of language in the descriptive section. All police report’s descriptive 

section is clustered into some categories which can be analyzed to investigate if different 

language is used for e-scooter and bicycle related accidents.   

Firstly, the digitized text is split into pieces based on space in the process known as 

Tokenization. The Tokenized text is then cleaned using the technique called Stopword removal. 

In which common English words with no meaning like ‘the’, ‘in’, etc. are removed. After 

cleaning, the remaining words are reduced to the base form of the word, for example ‘stopping’ 

is reduced to ‘stop’ in the process called lemmatization. Finally, the words are trained using two 

models to identify clusters. Again, Using the N-gram technique adjacent words are also 

combined to give the model more information.  Two models, Latent Dirichlet Allocation (LDA) 

and Bidirectional Encoder Representation from Transformers (BERT) is used to calculate the 

clusters among the reports.  
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LDA is a statistical natural language model which helps separate text document into different 

topic or classes by analyzing frequency of word counts. Likewise, BERT is a transformer-based 

machine learning technique for natural language processing.  

4.3 Resampling 

The categorical nature of the crash injury severity data and disproportional distribution of 

observation in each category makes the dataset suffer from class imbalance problem. Classes 

with smaller sample size are called minority class. In this study, crash severity categories - fatal 

injury and severe injury were combined as severe injury severity class and the remaining severity 

categories are combined to be non-serious injury severity class. The severe injury severity class 

is the minority class. There are different approaches to overcome this problem in dataset. Over-

sampling and under-sampling are two popular techniques to help balance the dataset.  

Over-sampling is a method in which samples of a minority class is synthetically produced using 

different techniques. The method is used to increase the sensitivity of a classifier to the minority 

class. One of the most widely used over-sampling methods is the Synthetic Minority Over-

Sampling Technique (SMOTE) algorithm [51]. The working principle of this method is it finds 

two nearest neighbor minority class data points, draws a line between them and generates a 

synthetic data point belonging to the minority class in that line. In this study, an open sourced, 

MIT-licensed library for python programming language, Imbalanced-learn is used to implement 

the SMOTE algorithm. The SMOTE algorithm uses unsupervised nearest neighbors learning 

algorithms like Multidimensional binary search trees (KD Tree) [52] and Ball Tree [53]. 

Several modified versions of SMOTE have been proposed such as Borderline-SMOTE [54], 

ADASYN [55]. There are also techniques that employ a hybrid approach for resampling, using 

both over-sampling and under-sampling. One such method is SMOTE-Tomek Links which 
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combines over-sampling method from SMOTE and under-sampling from Tomek Links. Tomek 

links is an under-sampling method that identifies pair of data points called ‘Tomek Link’. 

‘Tomek Link’ are pair of data points belonging to different class such that their Euclidean 

distance is minimum and one of the points belongs to the minority class.   

The Tomek link used in the Tomek algorithm is mentioned below. Here, 𝑑(𝑥𝑖 , 𝑥𝑗) denote the 

Euclidean distance between xi and xj, where xi denotes the sample that belongs to the minority 

class and xj denotes sample that belongs to the majority class. If no sample satisfies the following 

condition: 

𝑑(𝑥𝑖 , 𝑥𝑘) < 𝑑(𝑥𝑖 , 𝑥𝑗), 𝑜𝑟 

𝑑(𝑥𝑗 , 𝑥𝑘) < 𝑑(𝑥𝑖 , 𝑥𝑗) 

 

then the pair of (𝑥𝑖 , 𝑥𝑗) is a Tomek Link. 

The method identifies ‘Tomek Link’ pairs and eliminates the data point belonging to the majority 

class but near/identical to the minority class.  

Similarly, a hybrid approach in which over-sampling is paired with under-sampling is SMOTE-

NearMiss sampling. In this hybrid method of resampling, over-sampling of the minority class is 

paired with under-sampling of the majority class based on its average distance with the minority 

class. The smallest averaged distance sample is selected for under-sampling. 

The resampled datasets are evaluated before analyzing any further. The evaluation is done based 

on evaluation score on RF model using a repeated stratified K-fold cross-validation technique. 



31 

 

The resampled dataset is divided into 10 folds and the cross validator is repeated three times to 

get the average scores for each sample.  

4.4 Logistic Regression (classification) 

4.4.1 Variable Selection 

As part of feature selection, initially many variables are eliminated in the preprocessing stage of 

the analysis. Empty variables, variables with too many null values and irrelevant variables were 

eliminated. In addition to eliminating empty and unusable variables, collinearity test is also 

conducted using Pearson correlation coefficient. Variables which are correlated with each other 

with more than 0.6 correlation coefficient are removed. 
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Figure 3 Heatmap of correlation coefficient of independent variables and injury severity of e-

scooter crashes after removing variables with >0.6 coefficient with one another. 

Figure 3 depicts the heatmap of Pearson correlation coefficient between multiple variables after 

elimination of variables with more than 0.6 or -0.6 coefficient for e-scooter related crash data. 

Similarly, Figure 4 shows Pearson correlation coefficient for bicycle related crash data variables. 
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Figure 4 Heatmap of correlation coefficient of independent variables and injury severity of 

bicycle crashes after removing variables with >0.6 coefficient with one another. 

 

In addition to checking for colinearity, variable selection is done using chi- square contingency 

rest and PhiK correlation coefficient. PhiK is a new and useful correlation coefficient that 

captures non-linear dependency, consistently works with categorical, ordinal, and interval 

variables, and reverts to the Pearson correlation coefficient in the case of a bivariate normal input 
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distribution [50]. The correlation PhiK is derived from Pearson’s χ 2 contingency test i.e., the 

hypothesis test of independence between two (or more) variables in a contingency table. The 

correlation PhiK follows a uniform treatment for interval, ordinal and categorical variables [50]. 

The PhiK coefficient is calculated by firstly calculating Pearson’s chi-squared contingency test 

statistic 𝜒2.  

𝑋2 = ∑
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑖𝑗

0

 

Where, i and j are rows and columns of the contingency table. O is the observed frequency and E 

is the expected frequency. 

There are some drawbacks to using PhiK coefficients such as there are no closed-form formula 

for a PhiK coefficient. The coefficient ranges from 0 to 1, therefore does not indicate directional 

characteristics and the coefficient is not as precise as other coefficients such as Pearson’s 

correlation coefficient if working with numeric-only variable. Despite these shortcomings, this 

method is sufficient and appropriate for preliminary variable selection in this study. 

4.4.2 Logistic model 

Logistic regression classifier is used to analyze the contributing factors for injury severity 

classification. Statsmodels api was used to analyze the datasets using logistic regression. Logistic 

regression classifier is a transformation of a linear regression using the sigmoid function. The 

vertical axis stands for the probability for a given classification and the horizontal axis is the 

value of x. It assumes that the distribution of y|x is Bernoulli distribution. The formula of LR is 

as follows: 

https://www.sciencedirect.com/topics/computer-science/sigmoid-function
https://www.sciencedirect.com/topics/computer-science/classification
https://www.sciencedirect.com/topics/computer-science/bernoulli-distribution
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𝐹(𝑥) =
1

1 + 𝑒−(𝛽0+∑ 𝛽𝑖𝑥𝑖)𝑖
1

 

Here β0+∑βixi is similar to the linear model y = ax + b. The logistic function applies a sigmoid 

function to restrict the y value from a large scale to within the range 0–1 which in this study 

represent severe and non-severe injury. 

4.4.3 Performance Evaluation 

The logistic regression model is evaluated using a confusion matrix. The metrics of accuracy, 

precision, recall and F score were derived from the confusion matrix presented in Table 3. 

Table 3 Confusion matrix for 2-class classification 

 Predicted Positive Predicted Negative 

Actual Positive True Positive (TP) False Negative (FN) 

Actual Negative False Positive (FP) True Negative (TN) 

  

The metrics generated from the confusion matrix are calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FN + FP
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

𝐹 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ Precision ∗ Recall

Precision + Recall
 

 

https://www.sciencedirect.com/topics/computer-science/logistic-function
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The recall score of the test dataset was used as a basis for evaluating the models, as recall is 

sensitive to false negatives. A false negative occurs when a true positive is misclassified as a 

negative. In other words, this study places a greater emphasis on correctly identifying serious or 

fatal injuries and is more sensitive to falsely classifying serious injury as non-serious injury. 

 

4.5 Machine learning model 

In this paper, two tree based models are used to train the data. The models are discussed in detail 

below. The first model is a random forest, which is an ensemble learning method that uses 

multiple decision trees to make predictions. The second model is a XGBoost, which is a 

powerful and widely used classification algorithm that uses gradient boosting to improve model 

performance. Each of these models has its own strengths and weaknesses, and the results of the 

training process are discussed in the subsequent sections of this paper.  

4.5.1 Variable selection 

A separate collinearity analysis is done while preparing the dataset for machine learning model 

as tree-based models are robust against collinearity compared to logistic regression classification 

model. A threshold of |0.8| Pearson correlation coefficient is considered while selecting features 

for model training.  

After excluding features with high correlation with each other, PhiK correlation coefficient was 

conducted to select the best features for model training. The top variables according to the Phi_K 

coefficient, as shown in Figure 5, were selected for the model. In addition, some additional 

variables were included based on our literature review and domain knowledge. 
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Figure 5 Heatmap of PhiK correlation coefficient for e-scooter (left) and bicycle (right) with 

respect to injury severity 

4.5.2 Parameter tuning 

The whole dataset for each mode of transportation is divided into training data and validation 

data. The validation data is used for calculating optimal hyperparameter. The hyperparameter of 

the models are tuned using cross validation method. Cross validation technique divides the data 

into multiple subsets (folds) and train the model using different combination of subsets. The 

remaining subsets are used to test the performance of the trained model. This technique does not 

require separate training and testing dataset but using the whole data to train and test by making 

use of the subsets. Grid search technique involves specifying a grid of hyperparameters and a 

range of values for each parameter on which model is trained and evaluated. The optimal 

hyperparameters for each model and each mode of transportation are mentioned in  Table 4. 

Table 4 Optimal hyperparameter for Random Forest and XGBoost 

Model Random Forest Parameter E-scooter Bike 

Random Forest class_weight balanced balanced 
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criterion  gini gini 

max_depth 15 25 

min_sample_leaf 2 2 

min_sample_split 5 2 

n_estimators 100 100 

XGBoost alpha 0 0 

eta 0.01 0.01 

gamma 0 0 

lamda 0 0 

max_depth 2 2 

min_child_weight 1 0.1 

subsample 0.2 0.3 

 

4.5.3 Random Forest Model 

Random forest (RF) is a commonly used machine learning model which utilizes multiple decision 

trees to reach a single result [56]. Decision trees are supervised learning algorithms typically 

trained through the Classification and Regression Tree (CART) algorithm. Decision tree can be 

understood as a web of decisions that spilt the data into two groups at each node. Metric such as 

Gini impurity, information gain, or mean square error (MSE) are used to evaluate the quality of 

the split. 

RF is a set of decision trees combined with bagging method and feature randomness or feature 

bagging. The individual decision trees in the set of decision trees are built using a subset of data 

points selected by bagging method, the individual decision- tree’s features are also a subset of the 

actual features selected at random. These techniques make a random forest superior to a simple 
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decision tree algorithm in terms of classification and regression as it is less susceptible to over-

fitting, noise, and biases in the data.  

4.5.4 Extreme Gradient Boosting (XGBoost) 

XGBoost is a tree boosting machine learning algorithm under the framework of gradient boosting 

[57]. Just as RF combines the advantages of bagging and decision trees, gradient boosting method 

(GBM) forms a powerful tree-based learner through continuous iteration of the gradient 

optimization algorithm. The combination results in XGBoost, first proposed by Chen and 

Guestrin 2016 [58]. The algorithm is more efficient and powerful than other tree-based methods 

since it combines software and hardware optimization techniques and can be classified and 

regression.  

SHAP (SHAPley Additive exPlanations) is a technique used to evaluate the importance of 

features in a machine learning model. It is a game theory-based model implemented as a python 

library that provides explanations for the output of any machine learning model. SHAP uses 

SHAPley values, a concept from cooperative game theory, to determine the contribution of each 

input feature to the model's output. This technique helps to allocate "credit" for the model's 

predictions among its input features, allowing for a more detailed understanding of how the 

model is making its predictions [59]. 
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5 RESULTS 

5.1 Resampling 

Three resampling methods were implemented as discussed in the method section. The resampled 

datasets were evaluated using RF model, which showed that resampling done after variable 

selection performed better. The evaluation was done using cross validation simultaneously 

during the training of the model. The results of different resampled data using random forest 

cross validation is shown in the Table 4. Figure 6 shows the scattered plot of different sampled 

data with respect to age and network density. 0 here indicates non-serious injury and 1 indicates 

serious injury. 

Figure 6 Scatter plot of different resampled dataset 
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Table 5 Summary of sample evaluation 

Mode Sampling 

Technique 

Sample size 

(non-severe, 

severe) 

 Mean 

Accuracy 

Mean 

Precision 

Mean 

Recall 

E-scooter Original (132, 21)  0.8672 0.1000 0.0667 

SMOTE (132, 66)  0.8972 0.9540 0.7278 

SMOTE-NearMiss (99, 66)  0.8759 0.9232 0.7643 

SMOTE-Tomek (128, 66)  0.9118 0.9738 0.7571 

       

Bicycle Original (737, 103)  0.8750 0.0833 0.0094 

SMOTE (737, 368)  0.8745 0.8915 0.7110 

SMOTE-NearMiss (552, 368)  0.8438 0.8545 0.7393 

SMOTE-Tomek (726, 368)  0.8728 0.8891 0.7183 

The results show that resampling of the imbalanced data produced a much accurate classification 

model. Among the resampling methods we can see the performance of model trained with 

SMOTE and SMOTE-Tomek sample gave a higher precision and accuracy. Recall score is more 

sensitive to false negative which is more concerning to this study as it is studying the rare case of 

severe injury incidents. Hybrid resampling method SMOTE-NearMiss produces higher recall 

scores in both e-scooter and bicycle dataset. The study uses resampled dataset using SMOTE-

NearMiss method for further analysis based on the above results. 

5.2 Topic Modeling 

LDA was used to cluster topics for analysis for both the mode of transportation. Number of 

topics was fixed to 3 topics after testing for 3 t 8 topics as more topics ended up having more 

common words. Comparing the most common words in each topic it was evident that the 

difference in each cluster was not very prominent. Using LDA topic modeling, a term-dictionary 

consisting of a list of terms with their probability of occurrence in the documents corresponding 

to each topic is generated. The following table contains the top eight terms for each topic with its 

probability of occurrence.  



42 

 

Table 6 Top eight words in a topic and its probability for e-scooter using a LDA model 

Topic Top eight terms Mode 

0 0.020*"right" + 0.019*"travel" + 0.014*"driver" + 0.014*"turn" + 0.013*"lane" + 

0.011*"leave" + 0.011*"state" + 0.011*"stop" 

e-scooter 

1 0.023*"travel" + 0.022*"state" + 0.018*"pedestrian" + 0.016*"right"+ 

0.015*"stop" + 0.015*"turn" + 0.015*"driver" + 0.012*"lane" 

e-scooter 

2 0.019*"right" + 0.019*"travel" + 0.015*"turn" + 0.013*"driver" + 0.012*"stop" + 

0.012*"leave" + 0.012*"pedestrian" + 0.011*"bound" 

e-scooter 

   

0 0.023*"turn" + 0.021*"travel" + 0.021*"state" + 0.020*"right" + 0.018*"stop" + 

0.016*"leave" + 0.014*"lane" + 0.013*"driver" 

Bike 

1 0.029*"travel" + 0.026*"turn" + 0.024*"right" + 0.020*"lane" + 0.019*"stop" + 

0.016*"state" + 0.015*"driver" + 0.015*"leave" 

Bike 

2 0.030*"travel" + 0.025*"turn" + 0.022*"state" + 0.020*"leave" + 0.017*"right" + 

0.016*"front" + 0.016*"lane" + 0.013*"stop" 

Bike 

 

Comparing just the top eight words and its probability in each of the topics in both the mode of 

transportation we can observe there are a lot of repetitive words. The word “right”, “travel”, 

“driver”, “turn” are common on all three topics of e-scooter related crash narrative. Similarly, 

“turn”, “travel”, “state”, “right”, “stop”, and “leave” are common in all the topics in bike related 

crash narrative. Many words are also common within two of the topics in both mode of 

transportation. The words are also not indicative of any unusual behavior or action that might 

give clue related to severity of injury.   
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Since the topics generated by LDA was of no use, another method of topic modeling was 

implemented. The BERTopic library for python was implemented to cluster the documents into a 

number of topics for both the mode of transportation. Different number of topics were made 

using the documents. Different topics for e-scooter related crash as well as bike related crash text 

were analyzed for PhiK correlation with injury severity. The PhiK correlation coefficient was 

compared with the Phik correlation coefficient between age of rider and injury severity. The 

“nr_topics” parameter was changed to get different number of topics for the documents. The 

parameter was varied from 3 to 18 and the PhiK was compared. The topics which had the highest 

PhiK coefficient was chosed as the most optimal topic with respect to injury severity. The e-

scooter documents were clustered into six topics and the topics had a PhiK correlation coefficient 

of 0.237 with the injury severity which is similar to PhiK correlation coefficient between injury 

severity and age of rider which is 0.281. Similarly, bike documents were clustered into 11 topics 

and the Phik correlation coefficient between injury severity and topics was 0.15 which is more 

than the coefficient of 0.14 between rider’s age and injury severity.  

The top eight words and its probabilities from the selected topics are listed in Table 7 and Table 

8. The words and its probability are distinct in each topic with some words like travel, vehicle, 

repeated in many topics.  

Table 7 Top eight words in a topic and its probability for e-scooter dataset. 

Topic Top eight terms (e-scooter) 

10 0.059 * right + 0.056* travel + 0.052* stop + 0.051* turn + 0.047* driver + 0.046* leave + 

0.044* st + 0.043* state 

0 0.187* pedestrian + 0.069* way + 0.067* travel + 0.065* vehicle + 0.063* front + 0.057* right 

+ 0.056* intersection + 0.053* sidewalk 
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1 0.086* officer + 0.061* scene + 0.06* state + 0.057* respond + 0.056* vehicle + 0.05* front + 

0.049* block + 0.047* crash 

2 0.099* state + 0.086* driver + 0.062* intersection + 0.059* travel + 0.057* cross + 0.049* green 

+ 0.049* st + 0.048* lane 

3 0.123* bound + 0.094* lane + 0.088* travel + 0.086* nit + 0.085* turn + 0.084* gin + 0.07* 

right + 0.066* leave 

4 0.171* red + 0.154* crosswalk + 0.153* light + 0.077* strike + 0.077* turn + 0.074* attempt + 

0.071* cross + 0.068* proceed 

 

Table 8 Top eight words in a topic and its probability for bicycle dataset. 

Topic Top eight terms (bike) 

10 0.044* turn + 0.043* travel + 0.039* right + 0.037* lane + 0.036* leave + 0.036* state + 0.033* 

stop + 0.031* front 

0 0.051* right + 0.049* turn + 0.047* state + 0.046* lane + 0.042* travel + 0.039* driver + 0.036* 

front + 0.034* private 

1 0.101* light + 0.088* green + 0.079* intersection + 0.067* red + 0.057* travel + 0.053* turn + 

0.044* st + 0.039* leave 

2 0.129* stop + 0.104* sign + 0.073* intersection + 0.05* driver + 0.046* sidewalk + 0.041* right 

+ 0.04* rider + 0.039* state 

3 0.073* respond + 0.068* officer + 0.051* state + 0.049* report + 0.045* crash + 0.045* call + 

0.034* collision + 0.034* scene 

4 0.121* crosswalk + 0.104* cross + 0.083* st + 0.074* state + 0.071* strike + 0.066* travel + 

0.053* signal + 0.043* person 

5 0.067* injury + 0.06* transport + 0.056* dell + 0.05* shoulder + 0.05* rider + 0.046* right + 

0.045* seton + 0.044* strike + 0.035* damage 



45 

 

6 0.161* manor + 0.076* lane + 0.065* block + 0.048* travel + 0.048* leave + 0.048* nit + 

0.047* yield + 0.043* advise 

7 0.124* strike + 0.109* travel + 0.103* fail + 0.1* nit + 0.088* yield + 0.083* front + 0.083* 

stop + 0.065* ave 

8 0.218* riverside + 0.052* turn + 0.048* stop + 0.045* freeman + 0.044* travel + 0.044* cross + 

0.044* right + 0.043* sidewalk 

9 0.236* lot + 0.2* parking + 0.074* turn + 0.073* exit + 0.072* one + 0.066* park + 0.064* head 

+ 0.064* leave 

 

Figure 7 represents the percentage distribution of e-scooter topics across injury severity before 

resampling. Each cell in the non-severe row represents the percentage of data points with the 

respective topic among non-severe injury type. Topic-0 and Topic-1 are seen to have 

disproportionate numbers of severe injury type data. Similarly, Figure 8 represent the distribution 

of topics in different injury severity type. The distribution is not very distinct in bicycle topics, 

but Topic-1 has a slightly more severe injury type data. 

 

Figure 7 Percentage distribution of e-scooter topics across injury severity before resampling 
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Figure 8 Percentage distribution of bicycle topics across injury severity before resampling 

Figure 9 and Figure 10 are percentage distribution of topics with respect to injury severity type in 

e-scooter and bicycle after resampling using Smote-NearMiss. Like original data Topic-0 has 

higher presence in severe type injury severity whereas Topic-1 is neutralized as seen in Figure 9. 

The distribution for bicycle has also changed slightly after resampling, Topic-1 is still highly 

present in severe injury type whereas Topic-6’s disproportional presence in two types of injury 

severity is decreased. 

 

 

Figure 9 Percentage distribution of e-scooter topics across injury severity after resampling 
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Figure 10 Percentage distribution of bicycle topics across injury severity after resampling 

 

5.3 Logistic Regression (classification) 

Logistic regression model was conducted for both the e-scooter and bicycle dataset. The 

accuracy of the logistic regression classification model for e-scooter dataset is found to be 0.618. 

Similarly, the recall and precision are 0.30 and 0.54. The F1-score calculated from the recall and 

precision is 0.388.  

Likewise, the same analysis with the bicycle dataset gave an accuracy score of 0.65. The recall 

and precision of the dataset was 0.4 and 0.6 respectively. Using the recall and precision, the F-1 

score was calculated which turned out to be 0.48. 

The evaluation measure of the bicycle dataset is slightly better than the e-scooter dataset. The 

number of datapoints in both the datasets are not equal which can also be a reason for the slightly 

lower scores of e-scooter datasets. From the model, coefficient, and p-values of each of the 

variables are extracted and mentioned below.  
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The coefficient of all the variables with a p-value less than 0.1 for the e-scooter dataset is listed 

below. Observation shows the cost of the damage is the highest contributing variable for e-

scooter model followed by weekday-weekend indicating variable. Other variables contributing 

are hour class, ethnicity of rider, manner of maneuver of rider, traffic control type, age of rider, 

contributing factor of driver, contributing factor of rider, income, total population.  

Injury severity (e-scooter) = cost of damage * 1.74 - weekend/weekday * 1.52 – hour class * 

0.49 + ethnicity of rider * 0.28 – manner of maneuver of rider * 0.1 - traffic control type * 0.079 

+ age of rider * 0.031 – contributing factor of driver * 0.04 + contributing factor of rider * 0.026 

+ Income * 0.00002 - Total population * 0.00001  

Similarly, the coefficient of all the variables with a p-value less than 0.1 for the e-scooter dataset 

is listed below. It is observed that cost of damage is the highest contributing factor for bicycle 

model followed by helmet use and the type of vehicle in the crash and the type of bicycle 

facility. Other variables are season of the year, road alignment, maximum speed and contributing 

factor. The maximum speed is also correlated with the density of interstate/freeway highways 

around the crash location.    

Injury severity (bike) = cost of damage * 1.01+ helmet use * 0.38 + vehicle body type* 0.334 - 

bike facility type* 0.23 - season * 0.21 + road alignment * 0.15 - maximum speed * 0.017 - 

contributing factor of vehicle * 0.01  

Although the accuracy is not high the contributing factors are different for e-scooters and 

bicycles. For instance, weekday or weekend and hour of crash has an impact on e-scooter crash 

severity whereas season of year has an impact on bicycle crash. Similarly, Ethnicity, total 

population around the crash location and income of people around crash location only have an 
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impact on e-scooter injury severity classification. Built environment properties such as bicycle 

facility type and maximum speed or density of interstate/freeway around crash location has a 

contribution on bicycle crash injury severity classification and has no impact on e-scooter 

severity classification.  

The contributing factor variable which indicates the fault of rider or driver just before the crash 

contributes to both the classification. But both driver’s contributing factor and e-scooter’s 

contributing factors has an impact on e-scooter severity classification whereas in case of bicycle 

motor vehicle driver’s contributing factor has an impact on severity classification.  

The data on helmet on e-scooter was mostly empty, might also be because most e-scooter users 

do not were helmet as shown by multiple studies[31]. In case of bicycle use of helmet was also 

important feature in classifying if a crash was severely injured or not.  

5.4 Machine learning models 

As mentioned in the method section, three models were trained to classify serious injury and 

non-serious injury causing crashes in e-scooters and bicycles. The accuracy, precision and recall 

score of each model calculated using its confusion matrix is mentioned below. 

Table 9 Summary of model evaluation 

Mode Model Accuracy Precision Recall F1 

E-scooter Logistic 0.618 0.54 0.3 0.54 

Random Forest 0.902 0.900 0.890 0.884 

XGBoost 0.815 0.733 0.898 0.799 

     

Bicycle Logistic 0.65 0.6 0.4 0.48 

Random Forest 0.876 0.917 0.762 0.830 

XGBoost 0.705 0.595 0.838 0.695 
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The results demonstrate that machine learning models, specifically RF and XGBoost, outperform 

the logistic regression classification model in accurately classifying injury severity type. For 

instance, the random forest model achieves an accuracy of 0.902 and an overall F1 score of 

0.875 in predicting injury severity for E-scooter riders. Similarly, the XGBoost model attains an 

accuracy of 0.854 and F1 score of 0.840. Similarly for bicycle riders RF scores an accuracy of 

0.876 and F-1 score of 0.83. Likewise, XGBoost scores an accuracy of 0.705 and F-1 score of 

0.695. The recall of XGboost is greater than any model in both the datasets. Since this study is 

more concerned about identifying severe injury severity type than non-severe injury severity 

type, recall is considered to select the model for further analysis. A higher recall score indicates 

that the model can identify most of the positive cases which in this analysis is severe injury.  

severity type. SHAP analysis is conducted for the XGBoost model to understand the contributing 

features. 
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Figure 11 Top 15 features with its average SHAP value (left) and positive, negative relationship 

of the top 15 features with the target (right) for XGBoost model trained with e-scooter dataset. 

  

Figure 12 Figure 5 Top 15 features with its average SHAP value (left) and positive, negative 

relationship of the top 15 features with the target (right) for XGBoost model trained with bicycle 

dataset. 
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The vertical bar plot on the left in Figure 11 and Figure 12 shows the top features in descending 

order with its average of absolute SHAP values. The plot on the right side of the figures shows 

the positive and negative relationship of the top features with the target. The current average 

daily traffic, hour of day, gender of the rider and light condition of the location is the major 

contributing factor in e-scooter injury severity classification. Likewise, season of the year, 

population of black population, alignment of road, and traffic control type are major contributors 

in bicycle crash injury classification.  

Some major contributing factors are now compared between e-scooter riders and bicycle riders’ 

injury severity classification.  

Average daily traffic of interstate/freeway roadways has a high impact on e-scooter injury 

classification whereas the feature is not within the top 15 important features for bicycle injury 

classification.  

 

Figure 13 SHAP dependency plot showing the effect of average annual traffic on 

interstate/freeway road on the prediction of the models. The plot on the left side is from the e-

scooter model and the plot on the right side is from the bicycle model. 
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It is clear from the dependency plot that the average daily traffic in the interstate or freeway 

within 1 mile radius of the e-scooter crash has a clearer and higher impact on injury severity 

classification. Average daily traffic less than 150,000 indicates a severe injury. It is also evident 

from the graphs that crash location with zero or no interstate/freeway within 1 mile radius has a 

more severe injury. ADT for interstate/freeway is highly correlated with density of 

interstate/freeway, it might also indicate e-scooter crashes occurring in inner cities are more 

dangerous than crashes occurring in areas outside of inner city. 

 

 

Figure 14 SHAP dependency plot showing the effect of cost of crash on the prediction of the 

models. The plot on the left side is from the e-scooter model and the plot on the right side is from 

the bicycle model. 

The cost of damage indicated by the variable ‘Thousand_Damage_FI” has no impact on bicycle 

crash injury model whereas it has a meaningful impact on e-scooter crash injury. In case of e-

scooter crash, if a crash’s damage is more than a thousand dollors or equivalent it is more likely 

to have a severe injury.  



54 

 

 

Figure 15 SHAP dependency plot showing the effect of condition of lighting on the prediction of 

the models. The plot on the left side is from the e-scooter model and the plot on the right side is 

from the bicycle model. 

  

The condition of lighting has very less impact on bicycle injury classification compared to e-

scooter classification. Loght_Cond_ID code 1, which represent daylight has a negative impact on 

severe classification of injury severity in e-scooters whereas code 4 and 5 which are Dark, 

lighted and Dusk has a negative impact in case of bicycle. The dependency plot shows indicates 

that crashes at dark hours contributes to severe e-scooter injury whereas it doesnot have a huge 

impact on bicycle crash injury.  
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Figure 16 SHAP dependency plot showing the effect of proximity of transit stops on the 

prediction of the models. The plot on the left side is from the e-scooter model and the plot on the 

right side is from the bicycle model. 

As seen in Figure 16, D4A is the meaure representing the distance from the population-weighted 

centroid to nearest transit stop (meters). The SHAP dependency plot shows that the crash 

location with more transit or transit stops nearby contributes to e-scooter’s severe injury whereas 

the severity increases with increasing distance to transit in bicycle injury classification. This 

might be because most e-scooter crashes occur within core cities where shared e-scooters 

operate.  

The variables form smart location dataset are mostly correlated so only two variables, namely, 

D4A and Walkability index was used for modeling. The SHAP dependency plot for walkability 

index is mentioned in the appendix. The results for the walkability index do not show any 

distinct trends. 
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Figure 17 SHAP dependency plot showing the effect of hour of the day on the prediction of the 

models. The plot on the left side is from the e-scooter model and the plot on the right side is from 

the bicycle model. 

The impact of hour of the day and injury severity is not clear in case of bicycle crash whereas the 

trend is clear in e-scooter crashes. In can be infered that crashes occuring at midnight and hours 

after midnight has high contribution in classifying severe injury in e-scooter crashes.  

 

Figure 18 SHAP dependency plot showing the effect of vehicle body type on the prediction of 

the models. The plot on the left side is from the e-scooter model and the plot on the right side is 

from the bicycle model. 
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Vehicle body type is not a significant feature in e-scooter dataset for injury severity classification 

and was not used in e-scooter model. In case of bicycle, crashes involving SUV, Pickup, Van, 

and Heavy vehicle (2,3,4,5) are more indicative of severe injury severity than passenger vehicle 

(1). Similarly, Figure 19 shows the impact of bicycle facilities in injury severity classification. 

Bicycle facilities doesnot have an impact on e-scooter injury severity classification but has some 

impact on bicycle classification. Bike facility type 3 which is protected bike lane has negative 

impact on severe crash injury classification.   

 

 

 

Figure 19 SHAP dependency plot showing the effect of bicycle facility on the prediction of the 

model. The plot on the left side is for the e-scooter model and the plot on the right side is for the 

bicycle model. 
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5.4.1 Demographic  

Gender of the rider does not have any impact on bicycle crash injury whereas it does have an 

impact on e-scooter injury severity classification. Figure 20 shows that gender id 1, i.e., male has 

a higher contribution in classifying a datapoint as severe injury severity. Male (1) contributes in 

classifying a crash injury as severe whereas Female (2) contributes in classifying a crash injury 

as non-severe. 

 

  

Figure 20 SHAP dependency plot showing the effect of gender on the prediction of the model. 

The plot on the left side is for the e-scooter model and the plot on the right side is for the bicycle 

model. 

Ethnicity has a higher impact on classification of injury severity in e-scooter related crashes 

compared to crashes related to bicycles. The code 0 and 1 id for unknown and White population 

whereas 2 represent Hispanic, 3 Black, 4 Asian and 5 Indian American. Figure 21 shows that 

non-white ethnicity are more involved in severe crashes involving e-scooters. 
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Figure 21 SHAP dependency plot showing the effect of ethnicity on the prediction of the model. 

The plot on the left side is for the e-scooter model and the plot on the right side is for the bicycle 

model. 

 

  

Figure 22 SHAP dependency plot showing the effect of total black population per 1 mile around 

the crash location on the prediction of the model. The plot on the left side is for the e-scooter 

model and the plot on the right side is for the bicycle model. 
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Comparing the population of black population within 1 mile radius the crash location, we see the 

relation between severe injury and black population is inverse in both cases. Locations with 

higher black population is less likely to have severe injury in e-scooter related crashes whereas 

locations with higher black population is more likely to have severe injury in bicycle related 

crashes. 

The shap value are also higher in bicycle crash classification than e-scooter crash, indicating this 

variable’s impact is higher in bicycle crash injury severity classification than e-scooter injury 

classification. 

 

  

Figure 23 SHAP dependency plot showing the effect of total white population per 1 mile around 

the crash location on the prediction of the model. The plot on the left side is for the e-scooter 

model and the plot on the right side is for the bicycle model. 

The SHAP value of white population within 1 mile radius of crash location is not as important as 

black population for bicycle crashes whereas it is more impactful than black population variable 

in case of e-scooter crash injury classification. Location with white population less than 50000 
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has higher impact on classifying severe injury in e-scooter crashes whereas it is more ambiguous 

in bicycle crash injury classification.  

5.4.2 Topic 

 

 

Figure 24 SHAP dependency plot showing the effect of topic on the prediction of the model. The 

plot on the left side is for the e-scooter model and the plot on the right side is for the bicycle 

model. 

The impact of topic in injury severity classification is not mush in bicycle crashes whereas some 

trend can be observed in e-scooter related crashes. Topic-0, and Topic-1 has an impact in 

classifying crash injury as severe injury. The common words in Topic-0 are right, turn, state, 

lane, travel, drive, front and private. Combining the words using domain knowledge we can see 

some pattern such as right-turn private-drive and front. Manually analyzing police reports with 

these key words shows a clear patter. Vehicles making a turn from private drive gets in crash 

with e-scooter hitting the e-scooter by the vehicle’s front portion.E-scooters are driving in 

pedestrian sidewalks and vehicles are coming out from private parkings in  many cases involving 

such cases.   
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Similarly, Topic-1 has common words such as light, green, intersection and turn. These words 

indicates that intersection related crashes where the fault lies either in not following traffic sign 

properly while making a turn has higher impact on classifying crash as severe. 
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6 CONCLUSION 

Employing resampling techniques for an imbalanced class problem is an effective treatment 

method. Among the four samples evaluated, the SMOTE resampling and SMOTE-Tomek 

sampling methods produced the highest accuracy but when evaluated in terms of recall score 

SMOTE-NearMiss performed the best. The recall score increased more than 10-fold after 

resampling. A combination of domain knowledge and statistical methods for variable selection 

was used before training the models. 

Topic modeling using BERT natural language processing model gave a more distinguishing 

model than LDA model. There were six topics selected from e-scooter dataset and eleven topics 

recognized from bicycle crash data using BERT. The topics were used as variables in model 

training to understand their impact on injury severity classification. The analysis suggests 

vehicles making a turn from private drive and hitting a e-scooter dring in sidewalk by the 

vehicle’s front portion has a higher chance of getting into severe injury. Similarly, intersection 

related crashes where the fault lies either in not following traffic sign properly while making a 

turn has higher impact on classifying crash as severe. 

The results from model evaluation shows that the tree-based machine learning models are more 

accurate in classifying crashes in terms of severity of injury of micro-mobility users, although 

additional comparison is necessary to compare statistical and machine learning model. Recall 

score from confusion matrix indicated that the XGBoost model performed the best among the 

three models. Some inferences derived from comparing the results of SHAP analysis for 

XGBoost models from both datasets are mentioned below: 
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• E-scooter crashes occurring in inner cities are more dangerous than crashes occurring in 

areas outside of inner city. 

• The cost of damage has no impact on bicycle crash injury classification but has a 

meaningful impact on e-scooter crash injury. 

• Crashes at dark hours contributes to severe e-scooter injury whereas it doesnot have a 

huge impact on bicycle crash injury. 

• Increasing proximity from transit stops decreases the chance of severe classification in e-

scooter data, which might be because most severe e-scooter crashes occur in inner cities 

with many transits stops as shared e-scooters are mostly available in inner cities in 

Austin. 

• Hour of the day is not a clear indicator of injury severity in bicycle crashes, while it is in 

e-scooter crashes. E-scooter crashes occurring at late hours, especially after midnight 

hours are dangerous whereas bicycle injuries in the evening are more dangerous. This 

coincides with disproportionate e-scooter riders after midnight being intoxicated as seen 

in many studies. This result calls for serious regulatory evaluation of substance use and e-

scooter ridership.   

• Vehicle body type is not a significant feature in e-scooter dataset for injury severity 

classification but is in the case of bicycles. Crashes with large vehicles such as SUV, 

Van, Trucks increases the chance of severity of crash injury of bicyclist.  

• Bicycle crashes occurring at curved roads and straight roads with grades contribute to 

severe injury severity where it does not have distinctive impact on e-scooter injury.  
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• Type of bike facility does not seem to impact e-scooter crash severity as much as it 

impacts bicycle injury severity. This might indicate e-scooters use of bicycle lanes does 

not impact e-scooter safety in a negative way. 

• Gender of the rider has an impact on e-scooter injury severity classification as male 

contribute to more severe crashes, but not on bicycle crash injury. 

• Ethnicity has a significant impact on the model prediction of e-scooter injury severity 

whereas it has negligent impact on bicycle model predictions, indicating disproportionate 

use and disproportionate danger of e-scooter use with respect to ethnicity.  

• Total population does not show any trend in bicycle crash model but has a distinctive 

trend in e-scooter related crash data. Locations with lower population has more severe 

crash injury. Like total population the population of black population within 1 mile radius 

of the crash location has same characteristic for e-scooter but in case of bicycle more 

black population area increases the crash severity. 
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